√558 | √558
Aqui você encontrará respostas para perguntas do tipo: √558 | √558 ou qual a raiz quadrada de 558?
Calculadora de Raiz Quadrada
Por favor digite um número real: |
Resultado: A raíz quadrada de 558 é 23,62202362203543 Ou, √558 = 23,62202362203543 Demostre que a raíz quadrada de 558 é 23,62202362203543A raíz quadrada de 558 é definida como o número real positivo tal que, multiplicado por sí mismo, resulta em 558. A raíz quadrada de 558 pode ser escrita como (558)1/2. Assim, (558)1/2 = (23,62202362203543 × 23,62202362203543)1/2 (558)1/2 = [(23,62202362203543)2]1/2 (558)1/2 = (23,62202362203543)2/2 (558)1/2 = (23,62202362203543)1 Logo, √558 = 23,62202362203543 Veja também, abaixo, nesta página, como calcular a raiz quadrada de 558 usando o método babilônico. |
O Método Babilônico também conhecido como Método de Herão
Heron de Alexandria, ou ainda Hero ou Herão (10 d.C. - 80 d.C.) foi um sábio matemático e mecânico grego. John Hungerford Pollen considera que Herão viveu no século III a.C.
Veja abaixo como calcular a raiz quadrada de 558 passo-a-passo usando o Método Babilônico.
Neste caso, vamos usar o 'Método Babilônico' para obter a raiz quadrada de qualquer número positivo por aproximação.
Devemos definir um erro para o resultado final. Digamos, menor que 0,001 (chamaremos este valor de exatidão). Em outras palavras, tentaremos encontrar o valor da raiz quadrada com pelo menos 2 casas decimais corretas.
Passo 1:
Divida o número (558) por 2 para obter a primeira aproximaçãoo para a raiz quadrada.
Primeira aproximação = 558/2 = 279.
Passo 2:
Divida 558 pelo resultado obtido no passo anterior.
d = 558 / 279 = 2.
Tire a média aritmética de (d) e a aproximação obtida no passo 1:
(2 + 279) / 2 = 140,5 (nova aproximação).
erro = nova aproximação - aproximação anterior = 140,5 - 279 = 138,5.
O erro 138,5 é maior 0,001 (exatidão)? Sim. Então precisamos realizar este passo mais uma vez.
Passo 3:
Divida 558 pelo resultado obtido no passo anterior.
d = 558 / 140,5 = 3,97153024911.
Tire a média aritmética de (d) e a aproximação obtida no passo 2:
(3,97153024911 + 140,5) / 2 = 72,235765124555 (nova aproximação).
erro = nova aproximação - aproximação anterior = 72,235765124555 - 140,5 = 68,264234875445.
O erro 68,264234875445 é maior 0,001 (exatidão)? Sim. Então precisamos realizar este passo mais uma vez.
Passo 4:
Divida 558 pelo resultado obtido no passo anterior.
d = 558 / 72,235765124555 = 7,72470533174.
Tire a média aritmética de (d) e a aproximação obtida no passo 3:
(7,72470533174 + 72,235765124555) / 2 = 39,980235228148 (nova aproximação).
erro = nova aproximação - aproximação anterior = 39,980235228148 - 72,235765124555 = 32,255529896407.
O erro 32,255529896407 é maior 0,001 (exatidão)? Sim. Então precisamos realizar este passo mais uma vez.
Passo 5:
Divida 558 pelo resultado obtido no passo anterior.
d = 558 / 39,980235228148 = 13,956896371814.
Tire a média aritmética de (d) e a aproximação obtida no passo 4:
(13,956896371814 + 39,980235228148) / 2 = 26,968565799981 (nova aproximação).
erro = nova aproximação - aproximação anterior = 26,968565799981 - 39,980235228148 = 13,011669428167.
O erro 13,011669428167 é maior 0,001 (exatidão)? Sim. Então precisamos realizar este passo mais uma vez.
Passo 6:
Divida 558 pelo resultado obtido no passo anterior.
d = 558 / 26,968565799981 = 20,690755457244.
Tire a média aritmética de (d) e a aproximação obtida no passo 5:
(20,690755457244 + 26,968565799981) / 2 = 23,829660628613 (nova aproximação).
erro = nova aproximação - aproximação anterior = 23,829660628613 - 26,968565799981 = 3,138905171368.
O erro 3,138905171368 é maior 0,001 (exatidão)? Sim. Então precisamos realizar este passo mais uma vez.
Passo 7:
Divida 558 pelo resultado obtido no passo anterior.
d = 558 / 23,829660628613 = 23,416195836629.
Tire a média aritmética de (d) e a aproximação obtida no passo 6:
(23,416195836629 + 23,829660628613) / 2 = 23,622928232621 (nova aproximação).
erro = nova aproximação - aproximação anterior = 23,622928232621 - 23,829660628613 = 0,206732395992.
O erro 0,206732395992 é maior 0,001 (exatidão)? Sim. Então precisamos realizar este passo mais uma vez.
Passo 8:
Divida 558 pelo resultado obtido no passo anterior.
d = 558 / 23,622928232621 = 23,621119046091.
Tire a média aritmética de (d) e a aproximação obtida no passo 7:
(23,621119046091 + 23,622928232621) / 2 = 23,622023639356 (nova aproximação).
erro = nova aproximação - aproximação anterior = 23,622023639356 - 23,622928232621 = 0,000904593265.
O erro 0,000904593265 é menor que 0,001 (a exatidão). Assim, paramos o processo e usamos 23,622023639356 como o valor final para a raiz quadrada.
Logo, podemos dizer que a raiz quadrada de 558 é 23,62 com um erro menor que 0,001 (na realidade o erro é 0,000904593265). Isto significa que as primeiras 3 casas decimais estão corretas. Apenas para comparar, o valor retornado usando a função javascript 'Math.sqrt(558)' é 23,62202362203543.
Nota: Existem outras maneiras de calcular raiz quadrada. Este é apenas uma delas.
O que é raiz quadrada?
Definição de raiz quadrada
A raíz quadrada de um número 'a' é un número x tal que x2 = a, em outras palavras, um número x cujo quadrado é 'a'. Por exemplo, 23 é a raíz quadrada de 529 porque 232 = 23•23 = 529, -23 é a raíz quadrada de 529 porque (-23)2 = (-23)•(-23) = 529.
Tabela de raiz quadrada de 1 a 100
Raizes quadradas de 1 a 100 arredondadas até o milésimo mais próximo
n | n2 | √ |
---|---|---|
1 | 1 | 1,000 |
2 | 4 | 1,414 |
3 | 9 | 1,732 |
4 | 16 | 2,000 |
5 | 25 | 2,236 |
6 | 36 | 2,449 |
7 | 49 | 2,646 |
8 | 64 | 2,828 |
9 | 81 | 3,000 |
10 | 100 | 3,162 |
11 | 121 | 3,317 |
12 | 144 | 3,464 |
13 | 169 | 3,606 |
14 | 196 | 3,742 |
15 | 225 | 3,873 |
16 | 256 | 4,000 |
17 | 289 | 4,123 |
18 | 324 | 4,243 |
19 | 361 | 4,359 |
20 | 400 | 4,472 |
21 | 441 | 4,583 |
22 | 484 | 4,690 |
23 | 529 | 4,796 |
24 | 576 | 4,899 |
25 | 625 | 5,000 |
n | n2 | √ |
---|---|---|
26 | 676 | 5,099 |
27 | 729 | 5,196 |
28 | 784 | 5,292 |
29 | 841 | 5,385 |
30 | 900 | 5,477 |
31 | 961 | 5,568 |
32 | 1.024 | 5,657 |
33 | 1.089 | 5,745 |
34 | 1.156 | 5,831 |
35 | 1.225 | 5,916 |
36 | 1.296 | 6,000 |
37 | 1.369 | 6,083 |
38 | 1.444 | 6,164 |
39 | 1.521 | 6,245 |
40 | 1.600 | 6,325 |
41 | 1.681 | 6,403 |
42 | 1.764 | 6,481 |
43 | 1.849 | 6,557 |
44 | 1.936 | 6,633 |
45 | 2.025 | 6,708 |
46 | 2.116 | 6,782 |
47 | 2.209 | 6,856 |
48 | 2.304 | 6,928 |
49 | 2.401 | 7,000 |
50 | 2.500 | 7,071 |
n | n2 | √ |
---|---|---|
51 | 2.601 | 7,141 |
52 | 2.704 | 7,211 |
53 | 2.809 | 7,280 |
54 | 2.916 | 7,348 |
55 | 3.025 | 7,416 |
56 | 3.136 | 7,483 |
57 | 3.249 | 7,550 |
58 | 3.364 | 7,616 |
59 | 3.481 | 7,681 |
60 | 3.600 | 7,746 |
61 | 3.721 | 7,810 |
62 | 3.844 | 7,874 |
63 | 3.969 | 7,937 |
64 | 4.096 | 8,000 |
65 | 4.225 | 8,062 |
66 | 4.356 | 8,124 |
67 | 4.489 | 8,185 |
68 | 4.624 | 8,246 |
69 | 4.761 | 8,307 |
70 | 4.900 | 8,367 |
71 | 5.041 | 8,426 |
72 | 5.184 | 8,485 |
73 | 5.329 | 8,544 |
74 | 5.476 | 8,602 |
75 | 5.625 | 8,660 |
n | n2 | √ |
---|---|---|
76 | 5.776 | 8,718 |
77 | 5.929 | 8,775 |
78 | 6.084 | 8,832 |
79 | 6.241 | 8,888 |
80 | 6.400 | 8,944 |
81 | 6.561 | 9,000 |
82 | 6.724 | 9,055 |
83 | 6.889 | 9,110 |
84 | 7.056 | 9,165 |
85 | 7.225 | 9,220 |
86 | 7.396 | 9,274 |
87 | 7.569 | 9,327 |
88 | 7.744 | 9,381 |
89 | 7.921 | 9,434 |
90 | 8.100 | 9,487 |
91 | 8.281 | 9,539 |
92 | 8.464 | 9,592 |
93 | 8.649 | 9,644 |
94 | 8.836 | 9,695 |
95 | 9.025 | 9,747 |
96 | 9.216 | 9,798 |
97 | 9.409 | 9,849 |
98 | 9.604 | 9,899 |
99 | 9.801 | 9,950 |
100 | 10.000 | 10,000 |